250,435 research outputs found

    Production of regional 1 km x 1 km water vapor fields through the integration of GPS and MODIS data

    Get PDF
    <p>Atmospheric water vapor is a crucial element in weather, climate and hydrology. With the recent advance in Global Positioning System (GPS) Meteorology, ground-based GPS has become an operational tool that can measure precipitable water vapor (PWV) with high accuracy (1~1.5mm) during all-weathers, and with high temporal resolution (e.g. 5 minutes) at low cost. But the spatial coverage of GPS receivers is limited, and restricts its applications. At present, two NASA Moderate Resolution Imaging Spectroradiometer (MODIS) can provide global coverage 2D water vapor field with a spatial resolution of 1 km × 1 km (at nadir) every 2 days, and at many latitudes can provide water vapor fields every 90 minutes, 4 times a day. The disadvantages of MODIS water vapor products are: 1). A systematic uncertainty of 5-10% is expected [Gao et al., 2003; Li et al., 2003]; 2). Since the MODIS water vapor retrieval relies on observations of water vapor attenuation of near Infrared (IR) solar radiation reflected by surfaces and clouds, it is sensitive to the presence of clouds. The frequency and the percentage of cloud free conditions at mid-latitudes is only 15-30% on average [Li et al., 2004]. Therefore, in order to extract a water vapor field above the Earth’s surface, an attempt needs to be made to fill in the cloudy pixels.</p> <p>In this paper, an inter-comparison between MODIS (collection 4) and GPS PWV products was performed in the region of the Southern California Integrated GPS Network (SCIGN). It is shown that MODIS appeared to overestimate PWV against GPS with a scale factor of 1.05 and a zero-offset of –0.7 mm. Taking into account the small standard deviation of the linear fit model, a GPS-derived correction linear fit model was proposed to calibrate MODIS PWV products, and a better agreement was achieved. In order to produce regional 1 km × 1 km water vapor fields, an integration approach was proposed: Firstly, MODIS near IR water vapor was calibrated using GPS data; secondly, an improved inverse distance weighted interpolation method (IIDW) was applied to fill in the cloudy pixels; thirdly, the densified water vapor field was validated using GPS data. It is shown that the integration approach was promising. After correction, MODIS and GPS PWV agreed to within 1.6 mm in terms of standard deviations using appropriate extent and power parameters of IIDW, and the coverage of water vapor fields increased by up to 21.6%. In addition, for the first time, spatial structure functions were derived from MODIS near IR water vapor, and large water vapor variations were observed from time to time.</p&gt

    Anisotropy and interaction effects of strongly strained SrIrO3 thin films

    Full text link
    Magneto-transport properties of SrIrO3_3 thin films epitaxially grown on SrTiO3_3, using reactive RF sputtering, are investigated. A large anisotropy between the in-plane and the out-of-plane resistivities is found, as well as a signature of the substrate cubic to tetragonal transition. Both observations result from the structural distortion associated to the epitaxial strain. The low-temperature and field dependences of the Hall number are interpreted as due to the contribution of Coulomb interactions to weak localization, evidencing the strong correlations in this material. The introduction of a contribution from magnetic scatters, in the analysis of magnetoconductance in the weakly localized regime, is proposed as an alternative to an anomalously large temperature dependence of the Land\'{e} coefficient

    Light Hadron Physics at the B Factories

    Get PDF
    We report measurements of hadronic final states produced in e+ee^+e^- annihilations from the BaBar and Belle experiments. In particular, we present cross sections measured in several different processes, including two-photon physics, Initial-State Radiation, and exclusive hadron productions at center-of-mass energies near 10.58 GeV. Results are compared with theoretical predictions.Comment: Parallel talk at ICHEP08, Philadelphia, USA, July 2008. 4 pages, LaTeX, 12 eps figure

    Earthquake source parameters of the 2009 Mw 7.8 Fiordland (New Zealand) earthquake from L-band InSAR observations

    Get PDF
    The 2009 MW7.8 Fiordland (New Zealand) earthquake is the largest to have occurred in New Zealand since the 1931 Mw 7.8 Hawke’s Bay earthquake, 1 000 km to the northwest. In this paper two tracks of ALOS PALSAR interferograms (one ascending and one descending) are used to determine fault geometry and slip distribution of this large earthquake. Modeling the event as dislocation in an elastic half-space suggests that the earthquake resulted from slip on a SSW-NNE orientated thrust fault that is associated with the subduction between the Pacific and Australian Plates, with oblique displacement of up to 6.3 m. This finding is consistent with the preliminary studies undertaken by the USGS using seismic data

    Resistance noise in Bi_2Sr_2CaCu_2O8+δ_{8+\delta}

    Full text link
    The resistance noise in a Bi_2Sr_2CaCu_2O8+δ_{8+\delta} thin film is found to increase strongly in the underdoped regime. While the increase of the raw resistance noise with decreasing temperature appears to roughly track the previously reported pseudogap temperature for this material, standard noise analysis rather suggests that the additional noise contribution is driven by the proximity of the superconductor-insulator transition
    corecore